
When is Hemodynamic Support needed during Left Main PCI?

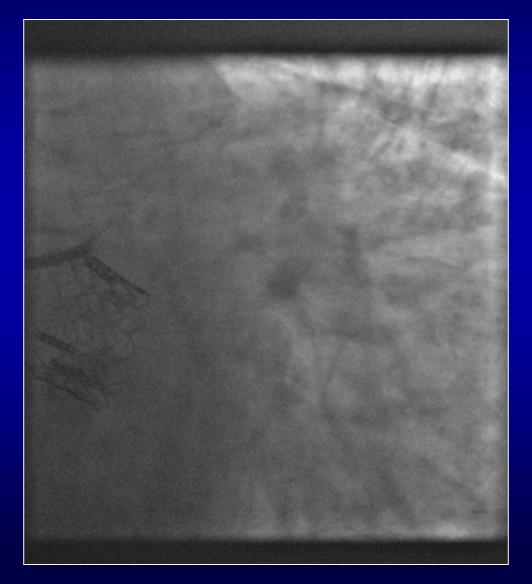
Raj R. Makkar, MD

Director, Interventional Cardiology and Cath Lab Associate Director, Cedars-Sinai Heart Institute

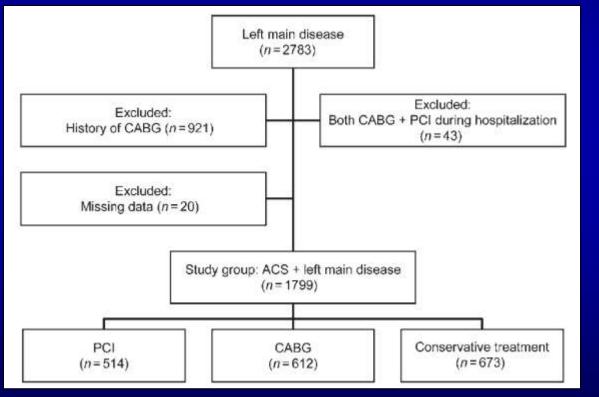
Most commonly used hemodynamic support devices in the cath lab

O'Neill W. et al. TCT 2012.

LM subsets requiring hemodynamic support


- Severely depressed LV systolic dysfunction
- Occluded/Non-dominant RCA
- Severe aortic stenosis
- Cardiogenic shock
- Ventricular arrhythmias
- Complex/calcified coronary anatomy, requiring atherectomy, multiple balloon dilatations and aggressive lesion prep

84 y/o female with h/o severe AS s/p TAVR with 23mm Edwards-SAPIEN 2 years ago p/w SOB on exertion. LVEF Normal Baseline coronary angiogram via trans-radial approach Although FFR LM → LAD 0.81, but IVUS MLA of LM 4.6


mm²

DES 3.5 x 18 mm to LM to LAD by Trans-radial approach, No hemodynamic support

1799 patients with unprotected left main coronary artery stenosis presenting with ACS in the GRACE Registry

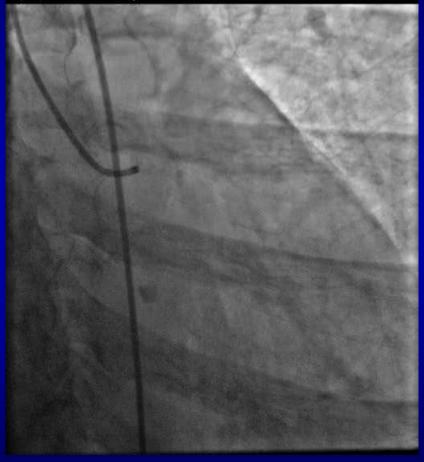
Balloon pump used in 20% of patients with undergoing PCI of ULMCA for ACS

Montalescot G. et al. European Heart Journal 2009.

Use and Effectiveness of IABP during high-risk PCI: NCDR Registry

Background—Intra-aortic balloon pumps (IABP) frequently are used to provide hemodynamic support during high risk percutaneous coronary intervention (PCI), but clinical evidence to support their use is mixed. We examined hospital variation in IABP use among high risk PCI patients, and determined the association of IABP use on mortality in this population.
Methods and Results—We analyzed data submitted to the CathPCI Registry between January 2005 and December 2007.

IABP used in 28.1% of ULMCA PCI in the United States


Hospitals were categorized into quartiles by their proportional use of IABP. we examined differences in in-nospital mortality across hospital quartiles using a hierarchical logistic regression model to adjust for differences in patient and hospital characteristics across hospital quartiles of IABP use. IABPs were used in 18 990 (10.5%) of 181 599 high risk PCIs. Proportional use of IABP varied significantly across hospital quartiles: Q1, 0.0 to 6.5%; Q2, 6.6 to 9.2%; Q3, 9.3 to 14.1%; Q4, 14.2 to 40.0%. In multivariable analysis, after adjustment for differences in patient and hospital characteristics, in-hospital mortality was comparable across quartiles of hospital IABP usage (Q1, Ref; Q2, odds ratio 1.11, 95% CI 0.99–1.24; Q3, OR 1.03, 95% CI 0.92–1.15; Q4, OR 1.06, 95% CI 0.94–1.18).

Conclusions—IABP use varied significantly across hospitals for high risk PCI. However, this variation in IABP use was not associated with differences in in-hospital mortality. (Circ Cardiovasc Qual Outcomes. 2012;5:21-30.)

Curtis JP. et al. Circulation: Cardiovascular Quality and Outcomes 2012.

47 y old executive with history of hodgkin's disease and radiation to chest. Presents with exertional angina. Vital capacity 40% of normal, MRI possible constriction. CT Surgical consultation is obtained.

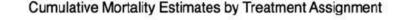
Lossy compression – not intended for diagnosis

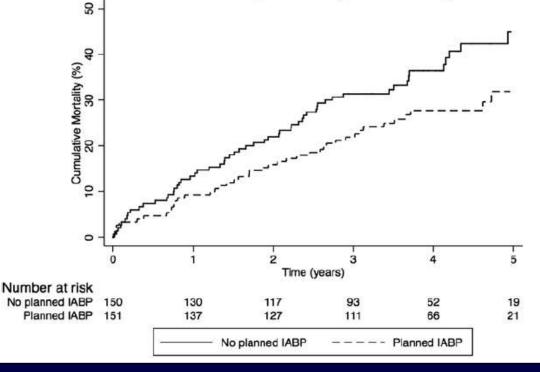
Post Procedure, Procedure time 1 hour, Discharged <24 hrs

Lossy compression - not intended for diagnosis

Lossy compression – not intended for diagnosis

BCIS-1 Study: Randomized trial of elective IABP versus no IABP in high-risk PCI IABP (n=150, <u>27% LM</u>); no IABP (n=151, <u>29% LM</u>)


Primary end-point: MACCE at 28 days (Death/MI/Stroke/Revascularization) No difference in primary end point at 28 days Trend towards improved mortality at 6 months


	N	No. (%)		P Value
Variable	Elective IABP (n = 151)	Elective IABP No Planned IABP (n = 151) (n = 150)		
Primary end point MACCE ^b		No. 11. AD47 814 - 14 843		18 Arrista
MACCED	23 (15.2)	24 (16.0)	0.94 (0.51-1.76)	.85
MI	19 (12.6)	20 (13.3)	0.93 (0.48-1.83)	.85
Death	3 (2.0)	1 (0.7)	3.02 (0.31-29.37)	.34
CVA	2 (1.3)	0		
Further revascularizatio	n <mark>1</mark> (0.7)	4 (2.7)	0.24 (0.03-2.20)	.21
Secondary end points 6-mo mortality	7 (4.6)	<mark>11</mark> (7.4) ^c	0.61 (0.24-1.62)	.32

Perera D. et al. JAMA 2008.

BCIS-1 Study: Randomized trial of elective IABP versus no IABP in high-risk PCI IABP (n=150, <u>27% LM</u>); no IABP (n=151, <u>29% LM</u>)

Significantly improved long-term mortality with IABP in high-risk PCI

31% relative reduction in long-term mortality with IABP 28% vs. 38.4%

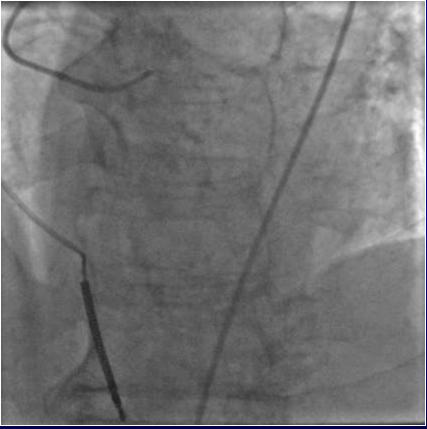
Perera D. et al. Circulation 2013.

Elective versus provisional intraaortic balloon pumping in unprotected left main stenting Milan Experience Elective IABP (n=69); Conservative group (n=150) Elective IABP used in 31% of patients undergoing LM PCI

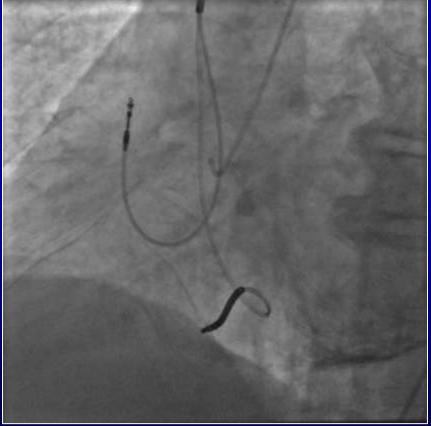
Milan criteria for elective IABP before ULMCA PCI

- LM bifurcation lesion
- EF < 40%
- Atherectomy
- Unstable angina
- RCA critical stenosis

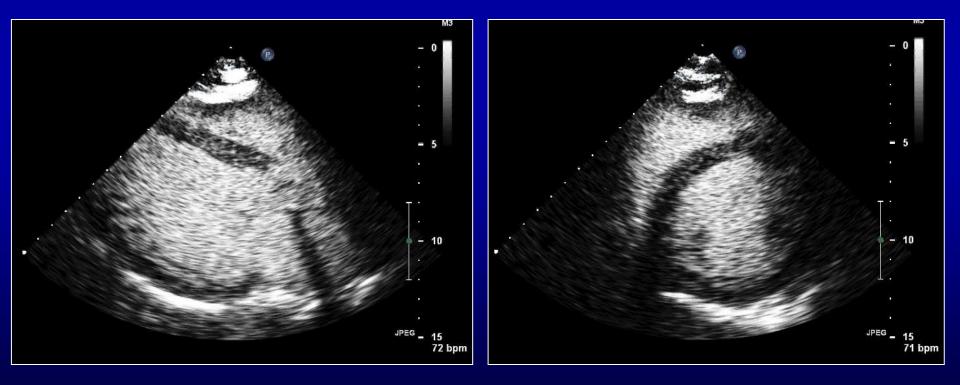
15% (12/150) patients in the conservative group required insertion of IABP due to hemodynamic instability

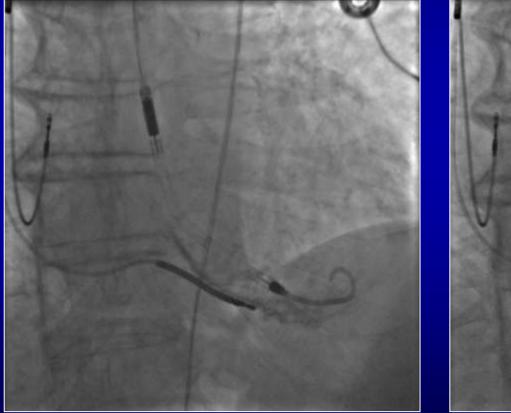

Briguori C. et al. American Heart Journal 2006.

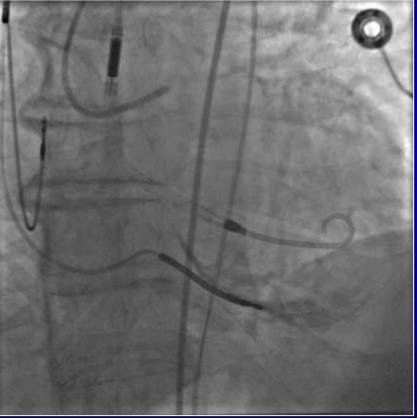
Elective versus provisional intraaortic balloon pumping					
in unprotected left main stenting			Milan Experience		
Elective IABP (n=69); Conservative group (n=150)					
		orocedural events e higher with			
Elective IABP is protective during LM PCI				approad	h
Odds ratio		1.4% vs. 9.5%			
Elective IABP	0.08 (0.01-0.69)		Elective IABP group (N = 69)	Conservative group (N = 150)	Р
Euroscore > 6 plus distal LM	5.49 (1.47-20.51)	Intraprocedural events Cumulative VF/VT CPA	1 (1.4%) 0	14 (9.5%) 2 (1.4%) 3 (2.0%)	.032 1.00 .48
SBP < 100mmHg	3.52 (0.50-24.73)	Hypotension/shock Death AMI Urgent CABG*	 0 0 0 0 1 (1.4%) 	3 (2.0%) 12 (8%) 0 2 (1.4%) 5 (3.3%)	.40 .020 1.00 1.00 .42


Briguori C. et al. American Heart Journal 2006.

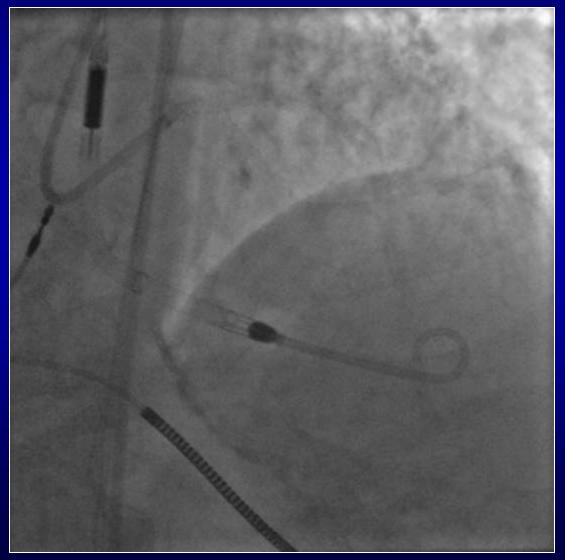
87 y/o male presenting with NSTEMI Severely depressed cardiac function (EF 15%)


80% ostial LM, 90% distal LM, 90% ostial LAD, 80% mid-LAD


100% prox-RCA with bridging collaterals to mid-RCA

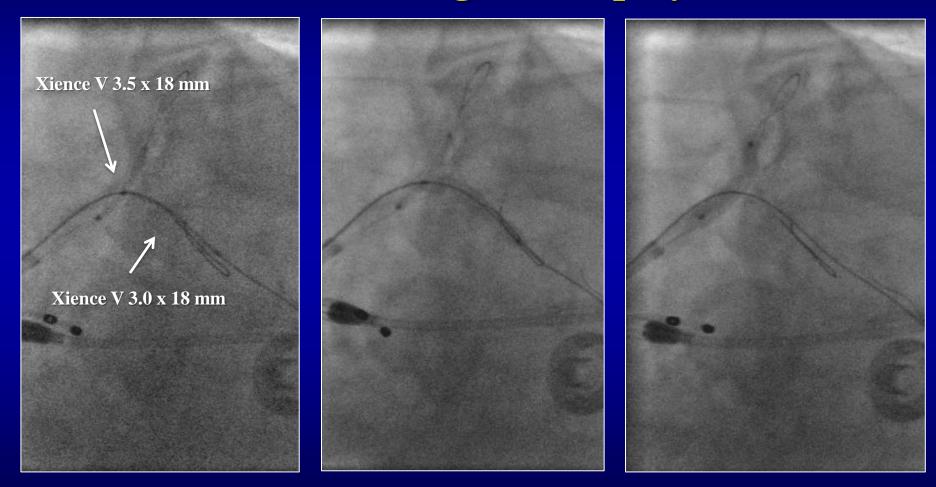


Severely depressed systolic function Ejection Fraction 15% Patient not a surgical candidate

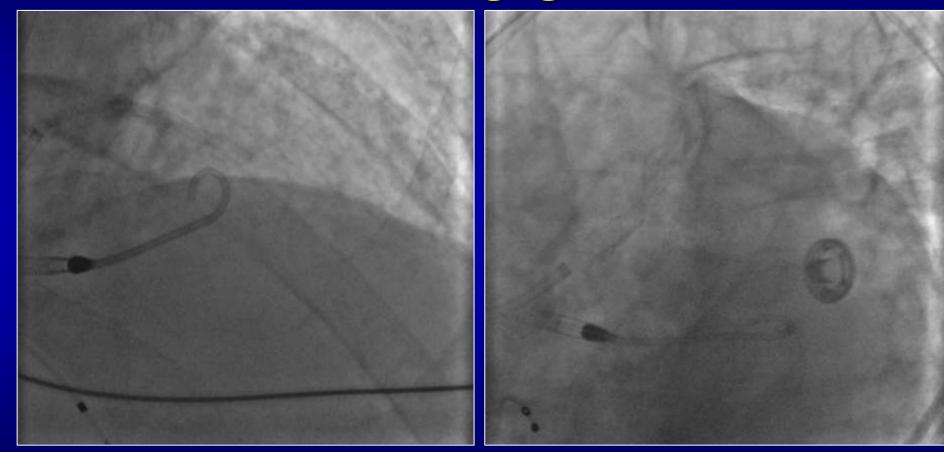

High-risk PCI of the LM performed with Impella 4.0 hemodynamic support

Final result

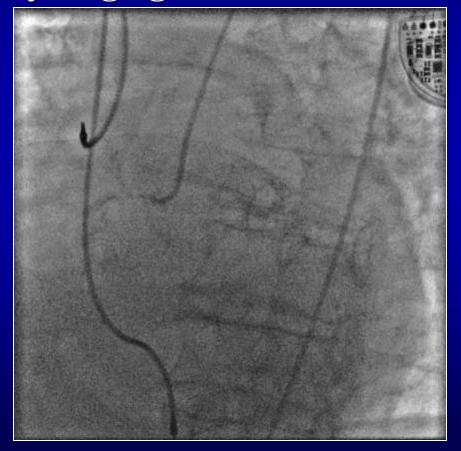
s/p Resolute 2.5x22mm, 2.25x14mm, 2.75x12mm and 3.0x26mm stents to the LAD


Patient discharged home 5 days later

71 y/o male with AVA 1.3 cm², LVEF 60%


Baseline Coronary Angiogram

Stent Positioning and Deployment



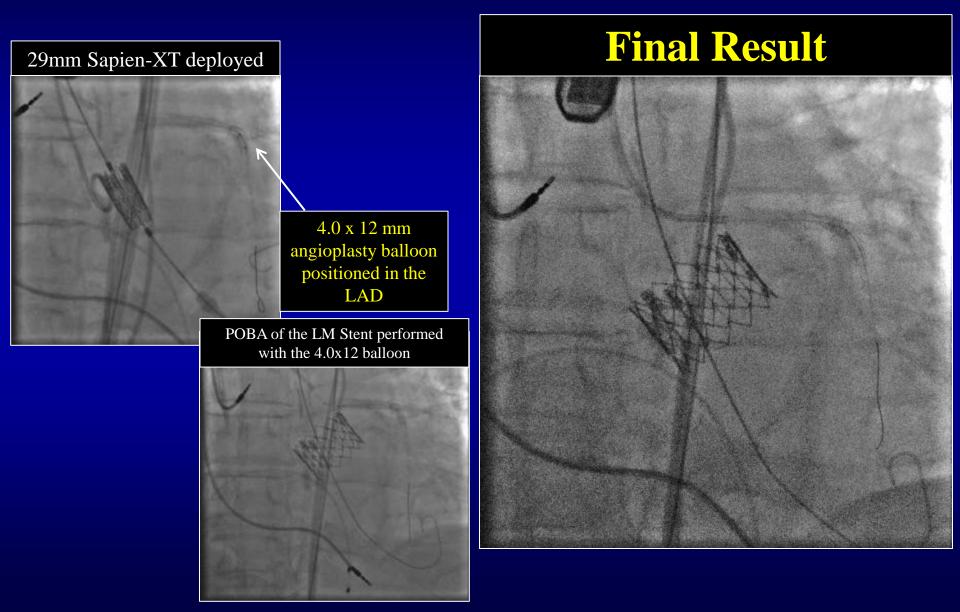
Final Angiogram

94 y/o male with LM trifurcation stenosis, severe AS and severely depressed EF (20%) Patient turned down by 2 surgeons Baseline Coronary Angiogram

Balloon aortic valvuloplasty performed, followed by insertion of Impella 4.0

22 x 5 mm Z-med BAV balloon

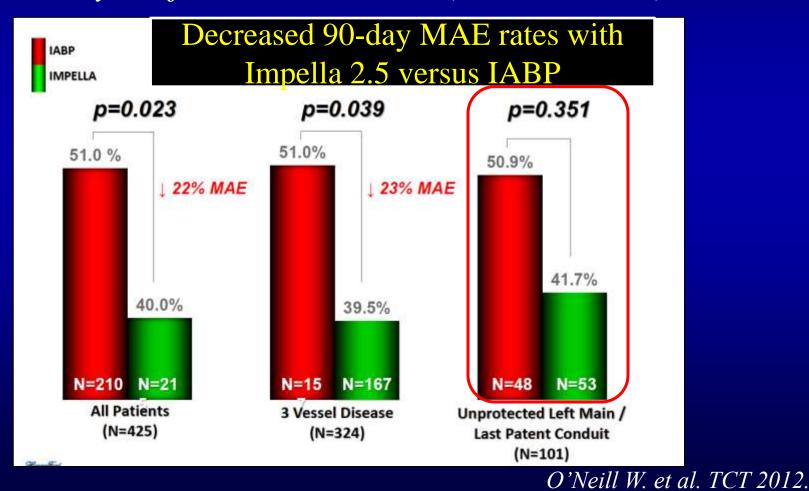
Angiogram after Impella insertion



Final Result

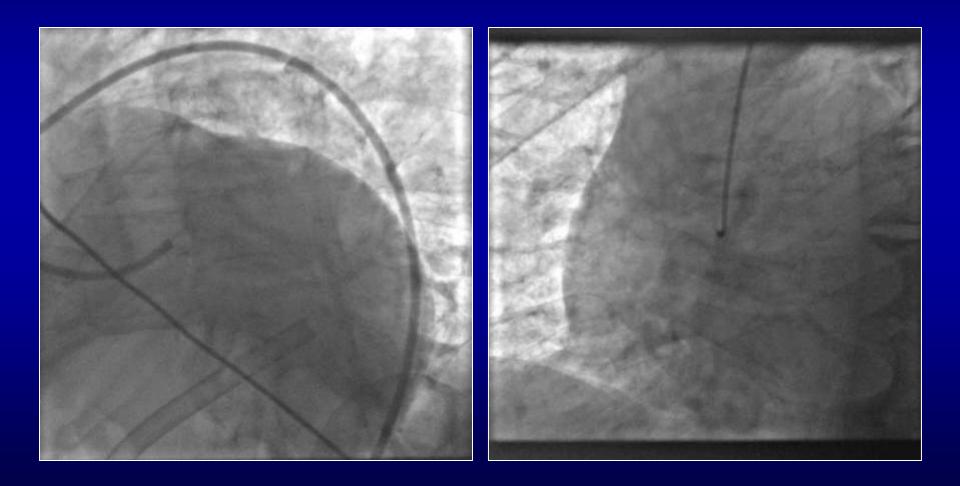
Impella removed at the end of the procedure

Transfemoral TAVR performed 1 month later



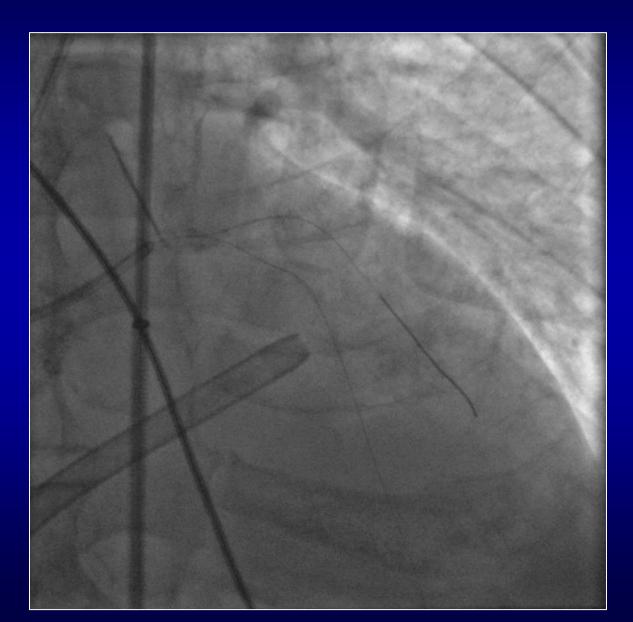
Safety and feasibility of Impella 2.5 in patients undergoing high-risk PCI: Europella Registry 144 patients undergoing high-risk PCI LM PCI performed in 52.8% (76/144) patients 30-day mortality 5.5%; 30-day MI 0%

Qualification for high-risk PCI	
Left main coronary artery PCI	76 (52.8)
Last patent vessel PCI	25 (17.4)
Multivessel disease	118 (81.9)
Low LVEF	51 (35.4)
Other	12 (8.3)
Refused for CABG	62 (43.1)


Sjauw KD. et al. JACC 2009.

PROTECT II Study: Randomized trial of Impella 2.5 versus IABP during high-risk PCI Unprotected left main/Last Patent Conduit group 90 day Major Adverse Event (Per-Protocol)

84 y/o male with unstable angina, LVEF 15%


Baseline Coronary Angiogram

Tandem heart placed for hemodynamic support

Percutaneous Left Ventricular Assist Device With TandemHeart for High-Risk Percutaneous Coronary Intervention: The Mayo Clinic Experience

High-risk PCI = Left main/Multivessel PCI with low EF 33/54 patients (62%) underwent LM PCI

High-risk LM PCI is feasible with Tandem Heart support

Favorable hemodynamics with Tandem Heart			
			P- value
RA pressure	16 mmHg	10 mmHg	< 0.001
PA pressure	45 mmHg	36 mmHg	0.04
PCWP	25 mmHg	17 mmHg	0.02
СО	4.7 L/min	5.7 L/min	0.03

97% procedural success 10% 30-day mortality

Alli et al. Catheterization and Cardiovascular Interventions 2012.

Percutaneous Left Ventricular Assist Device With TandemHeart for High-Risk Percutaneous Coronary Intervention: The Mayo Clinic Experience

High-risk PCI = Left main/Multivessel PCI with low EF

33/54 patients (62%) underwent LM PCI

Mayo Clinic Algorithm for hemodynamic support

during high-risk PCI

	Simple PCI	Complex PCI	
LVEF > 30%	None	IABP	
LVEF < 30%	IABP	Impella or Tandem Heart	

Alli et al. Catheterization and Cardiovascular Interventions 2012.

My approach to hemodynamic support in LM PCI

	Simple anatomy (Ostial, mid-shaft, single stent strategy)	Complex anatomy (Bifurcation lesion)	Very complex anatomy
LVEF < 20%	IABP/ Impella	Impella/ Tandem Heart	Impella/ Tandem Heart
LVEF 20-35%	IABP	IABP/ Impella	Impella
LVEF > 35%	4 French sheath	IABP	Impella